

How to make a node of IoT by using
OrangePi i96

Juozas Kimtys - How to make a node of IoT
by using OrangePi i96 – doc. ver.1.0

Table of contents:

<i>First impression</i>	2
<i>Creating system card</i>	4
<i>Serial console</i>	4
<i>Removing als</i> a	6
<i>Configuring SSH</i>	8
<i>Configuring GPIO</i>	10
<i>Installing Node.js</i>	14
<i>Setting my local time zone</i>	15
<i>Installing Node-RED</i>	16
<i>Open and edit files with MobaXterm</i>	17
<i>Blink LED (Node.js)</i>	20
<i>Using SPI ADC (Node.js)</i>	23

Table of figures:

Figure 1 - Options of OrangePi i96 on picture from manufacturer's site	2
Figure 2 - At first run the system (Debian) will resize disk partition.....	4
Figure 3 - Signal on TX pin of the module during initialization of the system	5
Figure 4 - Debian console first dialog.....	5
Figure 5 - Ubuntu console dialog and settings 'Display' of the program Realterm.....	6
Figure 6 – Debian console dialog after sudo orangepi-config	7
Figure 7 - Selections to configure Wi-Fi.....	7
Figure 8 - Console dialog to enter Wi-Fi AP name	7
Figure 9 - Debian console after the command 'ip addr'	8
Figure 10 - Ubuntu console after the command 'ifconfig'	8
Figure 11 - Ubuntu console dialog after sudo orangepi-config	9
Figure 12 - Debian console dialog Enable SSH (under Advanced settings).....	9
Figure 13 – Debian SSH console session from Windows PowerShell	10
Figure 14 – Ubuntu SSH console session from Windows PowerShell	10
Figure 15 - Ubuntu console dialog after sudo orangepi-config	11
Figure 16 - Ubuntu console dialog GPIO settings	11
Figure 17 - Default GPIO map after the command sudo gpio readall	11
Figure 18 - Console dialog getting gpio_fixup.py.....	12
Figure 19 - Console dialog executing sudo python3 gpio_fixup.py	13
Figure 20 - GPIO map on MobaXterm console dialog after executing gpio_fixup.py	14
Figure 21 - My server's Node-RED web page on browser running on my Windows.....	17
Figure 22 - MobaXterm program window after connection to my server	18
Figure 23 - Editing my first JavaScript program on MobaTextEditor.....	18
Figure 24 - Running my first JavaScript program on Node.js.....	19

Figure 25 - Web page example generated by Node.js on my OrangePi i96 server	19
Figure 26 - Finding connectors having pitch 2.0mm (screenshot from Farnell).....	20
Figure 27 - Finding connectors having pitch 2.0mm (cjk4202k/2 from rcl.lt).....	20
Figure 28 - Connecting oscilloscope probes to some gpio pins	21
Figure 29 - Prototype board to test GPIO	21
Figure 30 - Making JavaScript code on MobaXterm MobaTextEditor.....	22

First impression

Single Board Computer module OrangePi i96 - is it possible to make any useful things based on this module? The module is very small – the size is only 60 mm × 30mm, weight - only 30g. Pitch of 40-pins GPIO connector is **2.0 mm**, not 2.54 mm. Manufacturers page <http://www.orangepi.org/html/hardWare/computerAndMicrocontrollers/details/Orange-Pi-I96.html> contains more details. Price at AliExpress was 12€ (2022.02.15), but now (2022.12.07) is about 28€. For comparison - Raspberry Pi 4B 1GB RAM at AliExpress now (2022.11.22) I found price near 140€, Raspberry Pi 3B 1GB RAM at AliExpress now (2022.11.22) I found price about 220€. These prices are already "discounted" by about 50% ("black sale"). Things that make to think that something is wrong with the module OrangePi i96: 1) my module's seller company "Shenzhen Xunlong Software CO.,Limited" now sells only other products from series OrangePi, 2) other sellers at AliExpress do not show any sales history or users comments of product OrangePi i96 (possible they don't have any sales 2022.11.22).

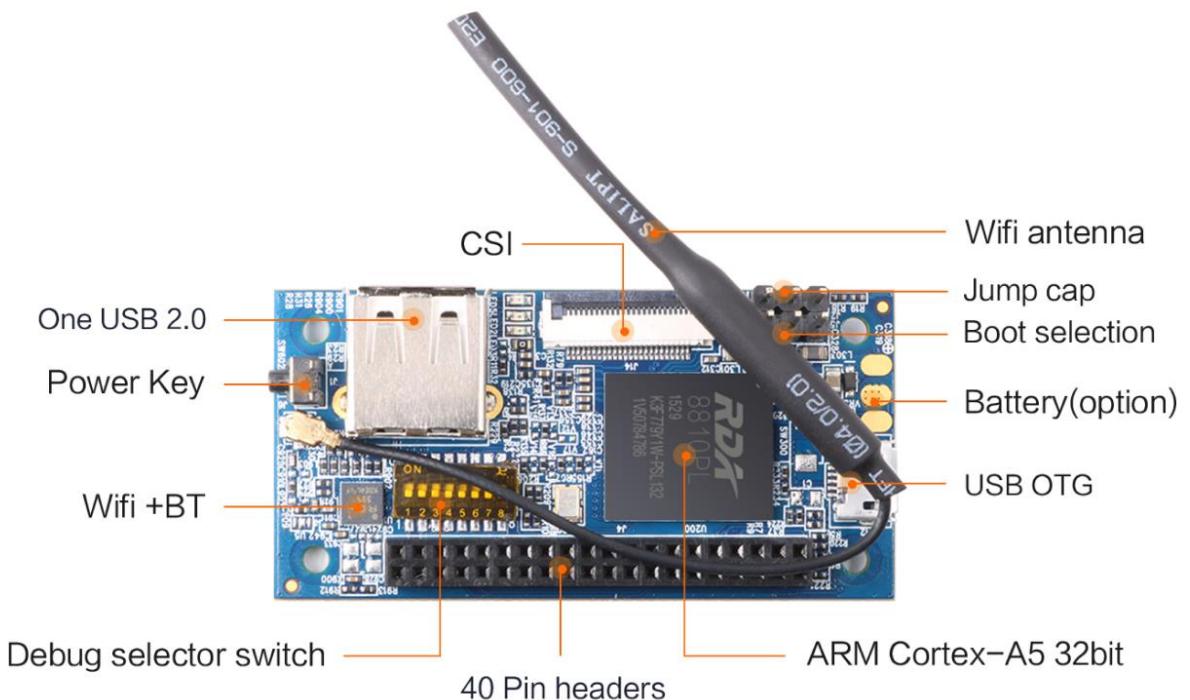


FIGURE 1 - OPTIONS OF ORANGEPI I96 ON PICTURE FROM MANUFACTURER'S SITE

There is no LCD screen connector on the module, but it is mentioned in the Manual. Other product from the same products line and having same processor, is module of type Orange Pi 2G-IoT – some software of this module may be good also for OrangePi i96.

Creating system card

Initially I decided to choose to install Ubuntu Server (not Android, not Debian), because previously many years I used Ubuntu Desktop on many my computers (virtual and physical).

But this my selection was wrong - when my successful investigation appears at the step to check how GPIO pins works, I found, that it is impossible to install WiringPi or WiringOP, because I did not find any source stating to be compatible with OrangePi i96. One dream to overcome this problem was to use Node.js module "onoff", because there was no information about requirement from "onoff" to have WiringPi installed. But module "onoff" rejects installation, because Python3 on Ubuntu 16.04 is too old version - 3.5.x, but requirement is to be not less than 3.6.

At this not very happy step I have found very good page about how to make Debian working on module OrangePi i96 and other useful advices: <https://jamesachambers.com/orange-pi-i96-getting-started-guide/>

and Debian card image from the same author:

<https://github.com/TheRemote/Legendary-OrangePi-i96/releases/> (Debian Bullseye Image v1.36 is current in 2022.11.23)

After downloading to Ubuntu Desktop computer and extracting, I have the file Legendary_OrangePi_i96_debian_bullseye_server_v1.36.img. Inserting USB adapter with inserted 16GB uSD card to computer USB port (not to uSD or to SD slot - if your Ubuntu Desktop runs on VMware virtual machine player) and checking does the system shows up the card. With help of the program Ubuntu Disks - removing all partitions from the card. In Ubuntu files explorer making right mouse click on the previously extracted system disk image file. Selecting option "Open With Disk Image Writer". Writing system image to the card. Note: it is required Ubuntu Desktop machine administrator's password (it is not available on "Try Ubuntu and later install" variant).

Link below is just for information where are placed other possible disk images for OrangePi i96 at manufacturers server (<https://drive.google.com/file/d/1skNNWISgk3h2GJmjPVWuWQPiGx8-WWM2/>)

During first run the system (Debian) will resize disk partition (my card is 16GB) to get all available space of the card:

```
Debian GNU/Linux 11 orangepii96 ttyS0
orangepii96 login: [ 36.802539] rc.local[396]: /media/boot: 26.2 MiB <27430912
bytes> trimmed
[ 44.565612] EXT4-fs (mmcblk0p2): resized to 1048576 blocks
[ 55.419189] EXT4-fs (mmcblk0p2): resized to 1572864 blocks
[ 68.538024] EXT4-fs (mmcblk0p2): resized to 2097152 blocks
[ 80.322143] EXT4-fs (mmcblk0p2): resized to 3145728 blocks
[ 87.581542] EXT4-fs (mmcblk0p2): resized filesystem to 3792896
[ OK ] Finished Resizing root filesystem to fit available disk space.
```

FIGURE 2 - AT FIRST RUN THE SYSTEM (DEBIAN) WILL RESIZE DISK PARTITION.

Serial console

Serial console is mandatory to check does the system works and allows to make initial configuration. In the Manual I didn't find requirements for voltage of serial adapter. From the other side, some forum user in the Internet alerted to not exceed allowed voltage (3V3 or 1V8 ?) to this module's serial input (RX line). For this reason, I made connection of module's TX line to my

oscilloscope, and I found, that voltage is about 3 volts (during startup period of my Ubuntu Server system on uSD card).

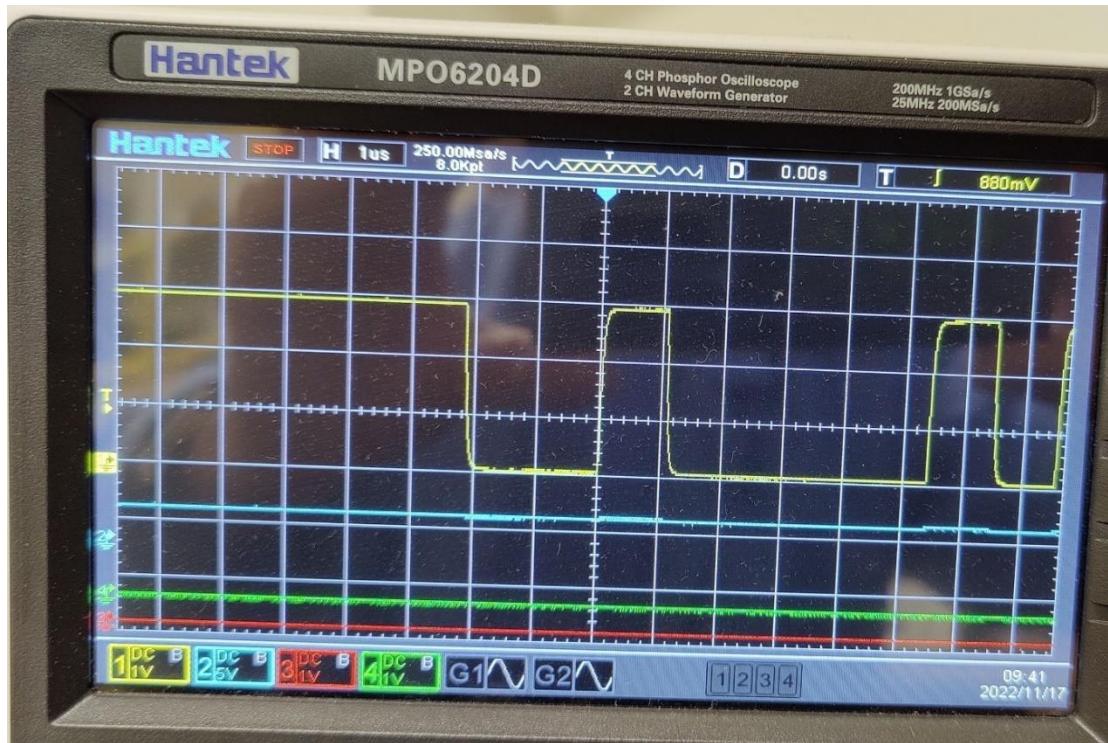


FIGURE 3 - SIGNAL ON TX PIN OF THE MODULE DURING INITIALIZATION OF THE SYSTEM

After, I made modernization of my adapter "USB-to-Serial RX TX" to be "3V3 compliant". Connecting my serial adapter to my Windows computer, checking port number in Device Manager and running the program Realterm and configuring 4 things: speed "921600", type of view "ANSI", port number, count of rows to watch - 50. Power on the module by using any phone charger having micro-USB connector (5V). Below is the picture of partial dialog in Realterm console window. It works! Typing username orangepi and password orangepi into the console window to login to my Server.

```
Debian GNU/Linux 11 orangepi96 ttyS0
orangepi96 login: orangepi
Password:
Linux orangepi96 3.10.62-re15.0.2-legendary-v1.36 #27 PREEMPT Mon Oct 24 17:31:
34 MDT 2022 armv7l
*****
Welcome to orangepi96 - Legendary
Please configure your orangepi96 with:
sudo orangepi-config
*****
The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/*copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.
Last login: Thu Nov 24 08:47:33 EET 2022 from 192.168.43.114 on pts/1
orangepi@orangepi96:~$ [ 81.194859] rc.local[433]: /: 12.8 GiB <13749575680 bytes) trimmed
[ 82.490674] rc.local[488]: /media/boot: 26.2 MiB <27430912 bytes) trimmed
```

FIGURE 4 - DEBIAN CONSOLE FIRST DIALOG.

Note: This screenshot was taken after making all required settings to the system and shows history of last connection from ssh client (it is my windows desktop computer).

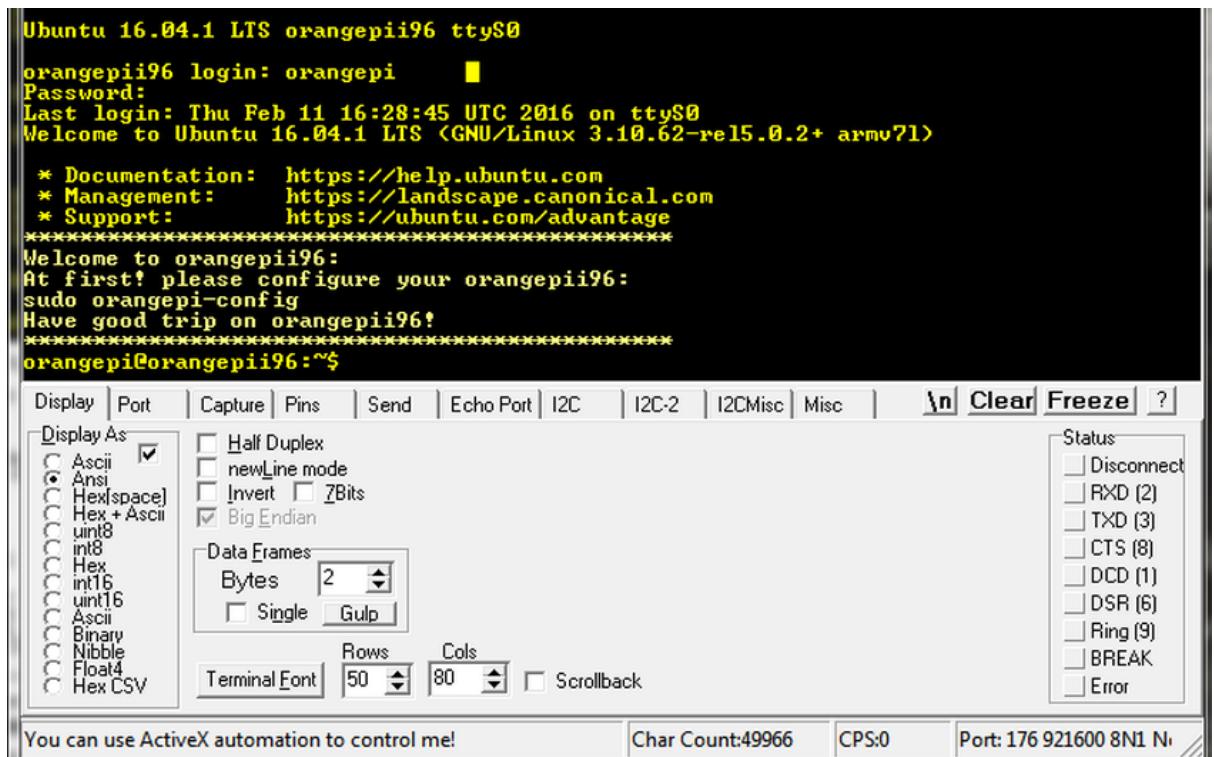


FIGURE 5 - UBUNTU CONSOLE DIALOG AND SETTINGS 'DISPLAY' OF THE PROGRAM REALTERM

Note: This screenshot was taken before making any settings to the system.

Removing als

This step is required only for Ubuntu variant. In Debian variant, possible that this step was already included by author of Debian system image.

History because it is required to remove als: After making first system setup (setup of WIFI) and cold restart, my server freezes at some point of startup during system initialization. Search on Internet allows me to understand, that I am not alone with similar problems. Some users were unable to start system in any case after reboot, but my case was "the problem after reboot after making first step of system setup". One of suggestions was to remove als. One wrote that there is absence of any sound devices on the module, so it will not be a problem to live without als.

After reading these suggestions, I created new Ubuntu card (because impossible to use existing - the system freezes after reboot) and running the command:

```
sudo apt-get purge --auto-remove als-audio
```

This helps!

Configuring Wi-Fi

My module will connect to Wi-Fi and to Internet by using my tablet computer (Android, SIM card, mobile data allowed). In settings of Android finding the function Wi-Fi hotspot, entering some

useful SSID name and strong password, allowing this hotspot. In Serial terminal window - login to my Ubuntu/Debian Server (user orangepi, password orangepi) and running the command:

```
sudo orangepi-config
```

Pay attention to the exact name of the command - the Manual of OrangePi i96 contains wrong name of this command. Right command text is from initial dialog in the console window of this server during initial system dialog.

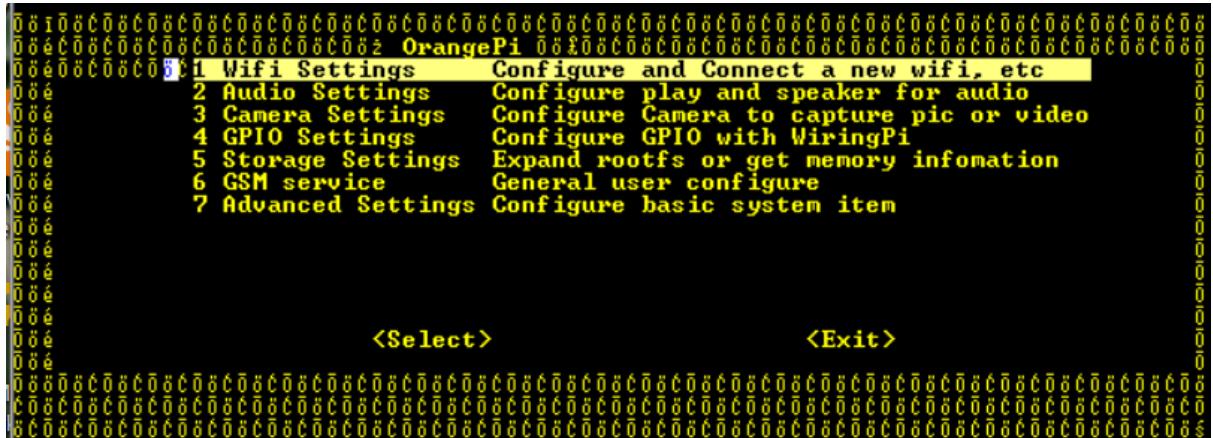


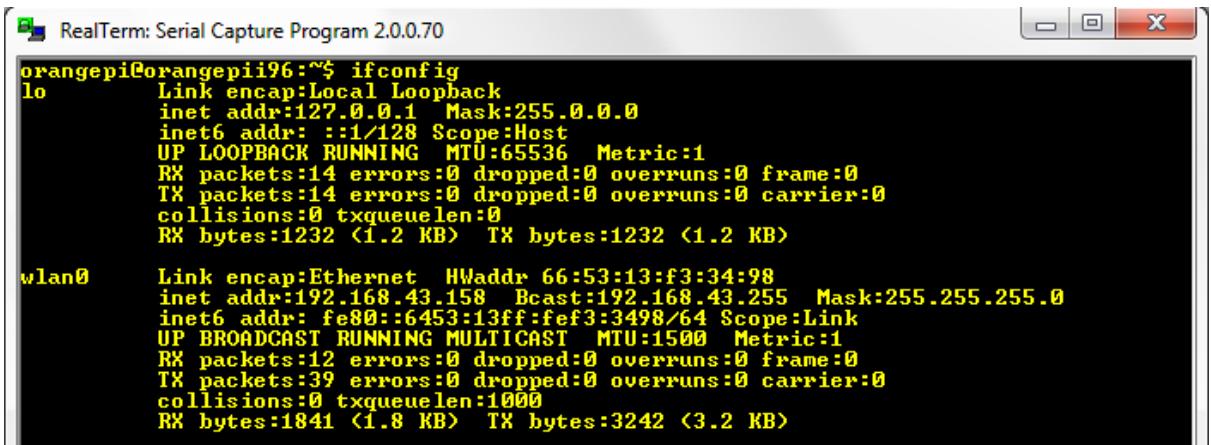
FIGURE 6 – DEBIAN CONSOLE DIALOG AFTER SUDO ORANGEPI-CONFIG

FIGURE 7 - SELECTIONS TO CONFIGURE WI-FI

FIGURE 8 - CONSOLE DIALOG TO ENTER WI-FI AP NAME

Pictures above contain information about console dialog during system configuration initiated by running sudo orangepi-config. Using "arrow up" or "arrow down" or "tab" keys to

navigate through controls. Selecting "Connect Wi-Fi" and in newly opened dialog entering WI-FI SSID and password. Doing reboot of the system by using the command:


```
sudo reboot
```

After reboot, login to the server and running a command

```
ifconfig (Ubuntu) or ip addr (Debian)
```

```
orangeipi@orangepii96:~$ ip addr
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
    inet 127.0.0.1/8 scope host lo
        valid_lft forever preferred_lft forever
    inet6 ::1/128 scope host
        valid_lft forever preferred_lft forever
2: sit0: <NOARP> mtu 1480 qdisc noop state DOWN group default
    link/sit 0.0.0 brd 0.0.0
3: wlan0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group default qlen 1000
    link/ether 0a:a6:97:0d:69:77 brd ff:ff:ff:ff:ff:ff
    inet 192.168.43.250/24 brd 192.168.43.255 scope global dynamic wlan0
        valid_lft 3382sec preferred_lft 3382sec
    inet6 fe80::8a6:97ff:fe0d:6977/64 scope link
        valid_lft forever preferred_lft forever
orangeipi@orangepii96:~$
```

FIGURE 9 - DEBIAN CONSOLE AFTER THE COMMAND 'IP ADDR'


```
RealTerm: Serial Capture Program 2.0.0.70
orangeipi@orangepii96:~$ ifconfig
lo      Link encap:Local Loopback
        inet addr:127.0.0.1  Mask:255.0.0.0
        inet6 addr: ::1/128 Scope:Host
              UP LOOPBACK RUNNING MTU:65536 Metric:1
              RX packets:14 errors:0 dropped:0 overruns:0 frame:0
              TX packets:14 errors:0 dropped:0 overruns:0 carrier:0
              collisions:0 txqueuelen:0
              RX bytes:1232 <1.2 KB>  TX bytes:1232 <1.2 KB>

wlan0    Link encap:Ethernet HWaddr 66:53:13:f3:34:98
        inet addr:192.168.43.158  Bcast:192.168.43.255  Mask:255.255.255.0
        inet6 addr: fe80::6453:13ff:fe3:3498/64 Scope:Link
              UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
              RX packets:12 errors:0 dropped:0 overruns:0 frame:0
              TX packets:39 errors:0 dropped:0 overruns:0 carrier:0
              collisions:0 txqueuelen:1000
              RX bytes:1841 <1.8 KB>  TX bytes:3242 <3.2 KB>
```

FIGURE 10 - UBUNTU CONSOLE AFTER THE COMMAND 'IFCONFIG'

Pictures above show what IP address of my server is. On my Ubuntu system: IP address will remain the same during a day - if to not to reenable Wi-Fi hotspot or to not cold start my Ubuntu system. But, on my Debian, IP address stays the same for many days independently of power on/off of the module and of the hotspot.

Configuring SSH

In Serial terminal window - login to my server (user orangepi, password orangepi) and running the command:

```
sudo orangepi-config
```

Pay attention to the exact name of the command - the Manual of OrangePi i96 contains wrong name of this command. Right command text is from initial dialog in the console window of

this server during initial system dialog. Picture below contain information about console dialog during system configuration initiated by running sudo orangepi-config. Using "arrow up" or "arrow down" or "tab" keys to navigate through controls. Selecting "Advanced Settings" and setting program switch to allow SSH. Also, in Advanced settings - changing host name from default "orangepii96" to custom "orangepii96-juozol".

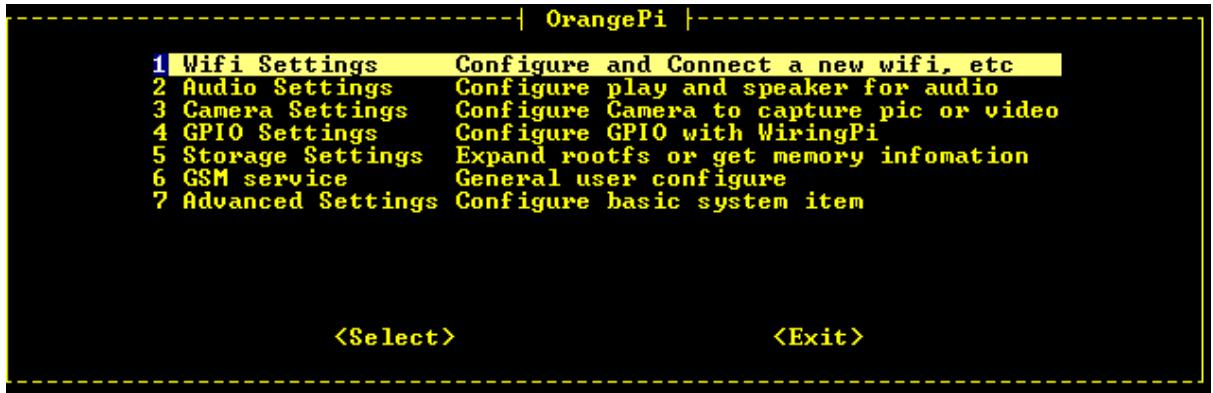
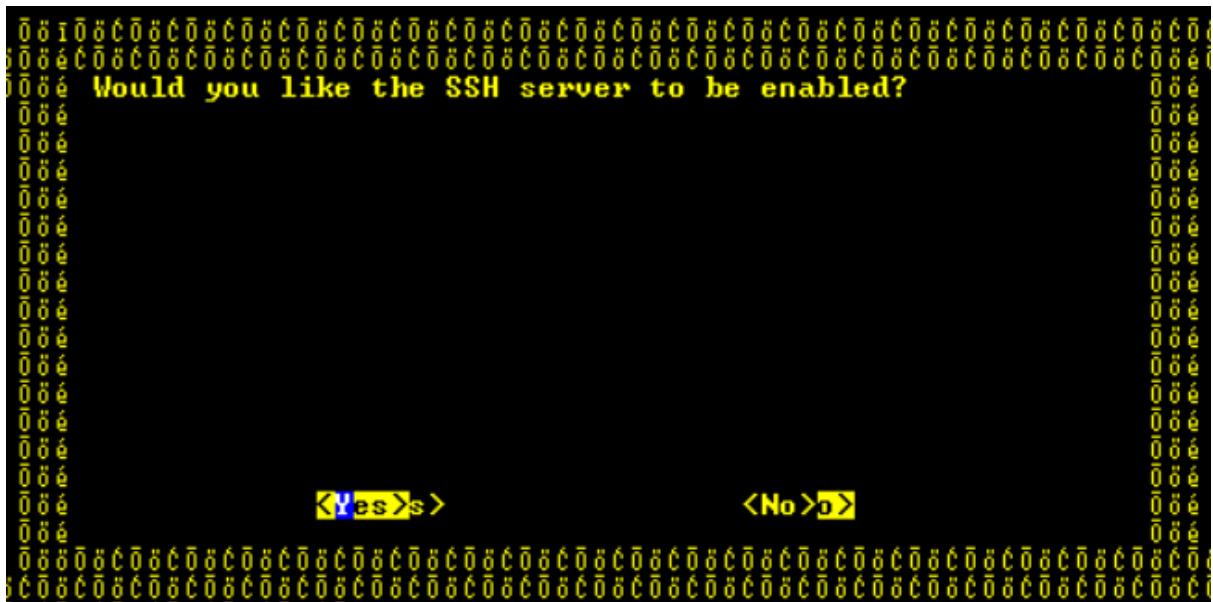
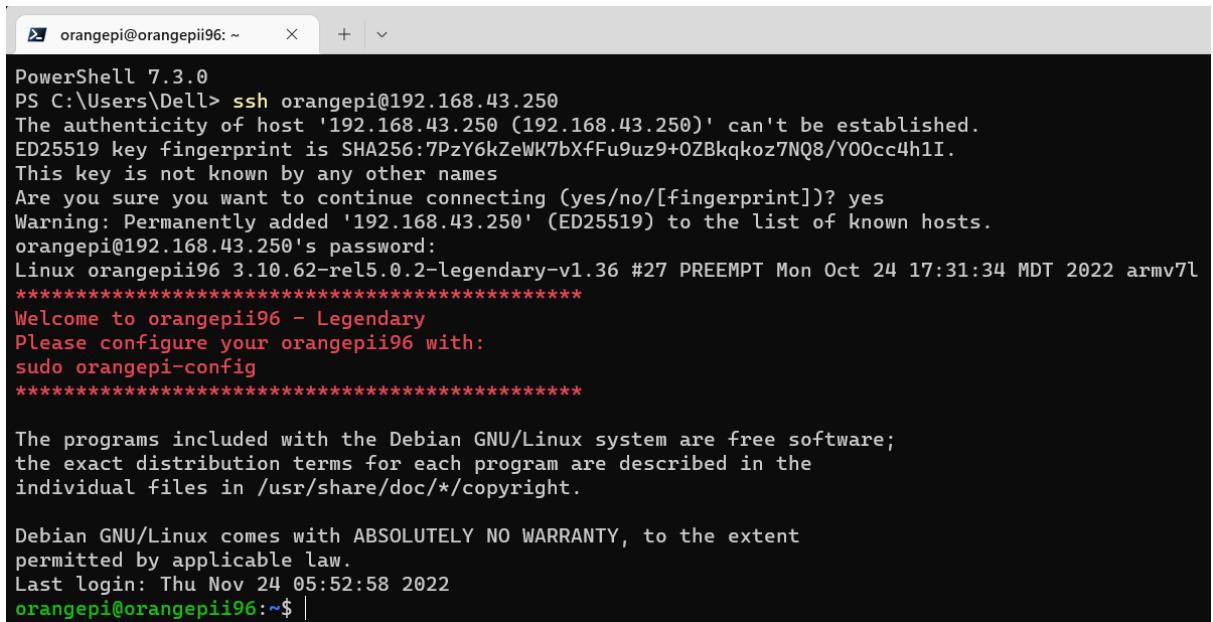


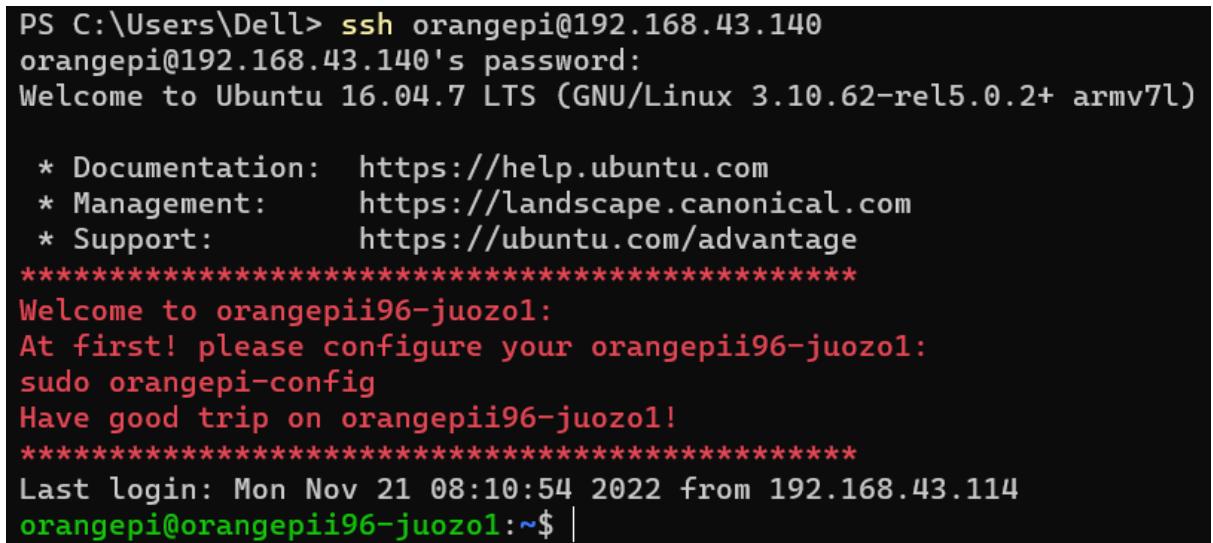
FIGURE 11 - UBUNTU CONSOLE DIALOG AFTER SUDO ORANGEPI-CONFIG




FIGURE 12 - DEBIAN CONSOLE DIALOG ENABLE SSH (UNDER ADVANCED SETTINGS)

Doing cold reboot of the system by using the command:

sudo halt


After disconnecting and reconnecting power, login to my module's system (Ubuntu or Debian) from Windows computer by using PowerShell tool by using the command ssh `orangeipi@192.168.43.209`. Note1: Serial console is still required to be sure about IP address of my system on module. Note2: my Windows computer's Wi-Fi must be connected to the same Wi-Fi hotspot as the module.

Pictures below shows communication session from Windows PowerShell (version 7.3.0).


```
PowerShell 7.3.0
PS C:\Users\Dell> ssh orangepi@192.168.43.250
The authenticity of host '192.168.43.250 (192.168.43.250)' can't be established.
ED25519 key fingerprint is SHA256:7PzY6kZeWK7bXfFu9uz9+0ZBkqkoz7NQ8/Y00cc4h1I.
This key is not known by any other names
Are you sure you want to continue connecting (yes/no/[fingerprint])? yes
Warning: Permanently added '192.168.43.250' (ED25519) to the list of known hosts.
orangepi@192.168.43.250's password:
Linux orangeipi96 3.10.62-rel5.0.2-legendary-v1.36 #27 PREEMPT Mon Oct 24 17:31:34 MDT 2022 armv7l
***** Welcome to orangeipi96 - Legendary
Please configure your orangeipi96 with:
sudo orangepi-config
***** The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*copyright.
Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.
Last login: Thu Nov 24 05:52:58 2022
orangepi@orangeipi96:~$ |
```

FIGURE 13 – DEBIAN SSH CONSOLE SESSION FROM WINDOWS POWERSHELL


```
PS C:\Users\Dell> ssh orangepi@192.168.43.140
orangepi@192.168.43.140's password:
Welcome to Ubuntu 16.04.7 LTS (GNU/Linux 3.10.62-rel5.0.2+ armv7l)

 * Documentation:  https://help.ubuntu.com
 * Management:     https://landscape.canonical.com
 * Support:        https://ubuntu.com/advantage
***** Welcome to orangeipi96-juozol:
At first! please configure your orangeipi96-juozol:
sudo orangepi-config
Have good trip on orangeipi96-juozol!
***** Last login: Mon Nov 21 08:10:54 2022 from 192.168.43.114
orangepi@orangeipi96-juozol:~$ |
```

FIGURE 14 – UBUNTU SSH CONSOLE SESSION FROM WINDOWS POWERSHELL

Configuring GPIO

In Serial terminal window - login to my Ubuntu Server (user orangepi, password orangepi) and running the command:

```
sudo orangepi-config
```

Pay attention to the exact name of the command - the Manual of OrangePi i96 contains wrong name of this command. Right command text is from initial dialog in the console window of this server during initial system dialog.

Picture below contain information about console dialog during system configuration initiated by running sudo orangepi-config. Using "arrow up" or "arrow down" or "tab" keys to navigate through controls. Selecting "GPIO Settings" and finding additional selections.

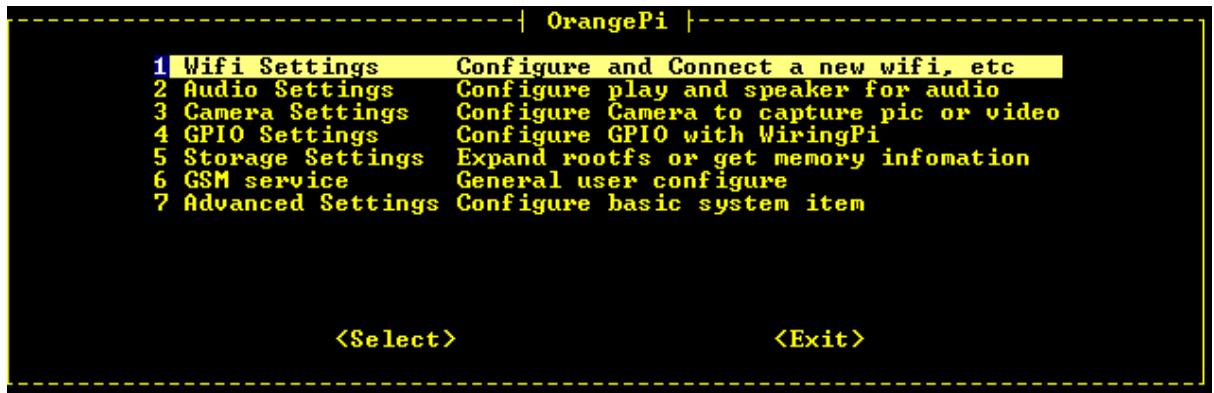


FIGURE 15 - UBUNTU CONSOLE DIALOG AFTER SUDO ORANGEPI-CONFIG

FIGURE 16 - UBUNTU CONSOLE DIALOG GPIO SETTINGS

Orange Pi I96												
RDA	wPi	Name	Mode	V	Physical	V	Mode	Name	wPi	RDA		
		GND			1	2		GND				
40	40	UART2.CTS	OUT	0	3	4		PWR_BTN_N				
104	104	UART2.TX	ALT	1	5	6		RST_BTN_N				
103	103	UART2.RX	ALT	1	7	8	0	ALT	SPI2.CLK	2	2	
41	41	UART2.RTS	OUT	0	9	10	0	IN	SPI2.DI	4	4	
14	14	UART1.TX	ALT	1	11	12	0	ALT	SPI2.CS1	6	6	
102	102	UART1.RX	ALT	1	13	14	0	ALT	SPI2.D0	3	3	
0	0	I2C2.SCL	ALT	1	15	16	0	ALT	I2S_LRCK	10	10	
1	1	I2C2.SDA	ALT	1	17	18	0	ALT	I2S_BCK	9	9	
38	38	I2C3.SCL	ALT	1	19	20	0	ALT	I2S.D0	13	13	
39	39	I2C3.SDA	ALT	1	21	22	0	ALT	I2S.DI	11	11	
15	15	G.A A15	ALT	0	23	24	1	ALT	G.B A20	20	20	
56	56	G.C B24	IN	1	25	26	0	ALT	G.D D02	66	66	
67	67	G.E D03	ALT	0	27	28	1	ALT	G.F A22	22	22	
30	30	G.G A30	ALT	0	29	30	0	ALT	G.H A29	29	29	
28	28	G.I A28	ALT	0	31	32	0	ALT	G.J 27	27	27	
26	26	G.K A26	ALT	0	33	34	0	ALT	G.L A25	25	25	
		V_PAD			35	36		SYS_DCIN				
		VDD_IN			37	38		SYS_DCIN				
		GND			39	40		GND				

FIGURE 17 - DEFAULT GPIO MAP AFTER THE COMMAND SUDO GPIO READALL

It must be possible to change direction (IN or OUT) and state (1 or 0) of any pin by using GPIO settings dialog. But only one pin I found working on my Debian system (**pin “56”**) – because almost all pins by default are set to do ALT function. **But none of GPIO functions work on Ubuntu because something wrong is on my Ubuntu image with existing GPIO libraries, trying to install wiringPi or wiringOP appears is not possible on this my Ubuntu, because too old version of Python on this Ubuntu and it is not supported module type (processor type) by xunlong’s wiringOP.**

Happily, it is a good solution with Debian – there is a good system disk image prepared by <https://jamesachambers.com/orange-pi-i96-getting-started-guide/>

Here is additional; good link about this theme: <https://discuss.96boards.org/t/resources-for-the-i96-orangepi/11444>

And code to change initial configuration of GPIO is here:

https://wiki.pbeirne.com/patb/i96/src/master/gpio_fixup.py from the site:
<https://wiki.pbeirne.com/patb/i96>

Here I will need the command “wget”, which is absent on Debian by default. Use these actions:

```
$ sudo apt-get update  
# Install the newest versions of all packages currently installed#  
$ sudo apt-get upgrade  
$ sudo apt install wget
```

Starting to get gpio_fixup.py:

```
cd /usr/local/bin  
wget http://wiki.pbeirne.com/patb/i96/raw/master/gpio_fixup.py  
  
orangepi@orangepi96:~$ cd usr  
orangepi@orangepi96:/usr$ cd local  
orangepi@orangepi96:/usr/local$ cd bin  
orangepi@orangepi96:/usr/local/bin$ sudo wget http://wiki.pbeirne.com/patb/i96/raw/master/gpio_fixup.py  
--2022-11-29 07:13:47-- http://wiki.pbeirne.com/patb/i96/raw/master/gpio_fixup.py  
Resolving wiki.pbeirne.com (wiki.pbeirne.com)... 158.51.124.249  
Connecting to wiki.pbeirne.com (wiki.pbeirne.com)|158.51.124.249|:80... connected.  
HTTP request sent, awaiting response... 301 Moved Permanently  
Location: https://wiki.pbeirne.com/patb/i96/raw/master/gpio_fixup.py [following]  
--2022-11-29 07:13:48-- https://wiki.pbeirne.com/patb/i96/raw/master/gpio_fixup.py  
Connecting to wiki.pbeirne.com (wiki.pbeirne.com)|158.51.124.249|:443... connected.  
HTTP request sent, awaiting response... 200 OK  
Length: unspecified [text/plain]  
Saving to: 'gpio_fixup.py'  
  
gpio_fixup.py [ <=> ] 2.35K --.-KB/s in 0s  
  
2022-11-29 07:13:50 (8.12 MB/s) - 'gpio_fixup.py' saved [2405]
```

FIGURE 18 - CONSOLE DIALOG GETTING GPIO_FIXUP.PY

```
orangepi@orangepii96:~$ cd ..
orangepi@orangepii96:/home$ cd ..
orangepi@orangepii96:$ cd usr
orangepi@orangepii96:/usr$ cd local
orangepi@orangepii96:/usr/local$ cd bin
orangepi@orangepii96:/usr/local/bin$ ls
devmem2.py  gpio  gpio_fixup.py  opio
orangepi@orangepii96:/usr/local/bin$ sudo python3 gpio_fixup.py
OrangePi-i96 fixup GPIO pins
Version 1.0
GPIO pins corrected to agree with the i96 bus spec
```

FIGURE 19 - CONSOLE DIALOG EXECUTING SUDO PYTHON3 GPIO_FIXUP.PY

Next – I must find how to run the command “Python3 gpio_fixup.py” during system boot.

Proposal of the author of the script gpio_fixup.py:

```
# add a line to /etc/rc.local to execute this at startup:
sudo sed -i "/^exit 0$/i /usr/local/bin/gpio_fixup.py" /etc/rc.local
```

Modifying permissions:

```
cd /usr/local/bin
sudo chmod +x gpio_fixup.py
```

Now GPIO map is correct:

			GND				1		2			GND		
40	40	UART2.CTS	ALT	0	3		4					PWR_BTN_N		
104	104	UART2.TX	ALT	1	5		6					RST_BTN_N		
103	103	UART2.RX	ALT	1	7		8	0	ALT	SPI2.CLK	2	2		
41	41	UART2.RTS	ALT	0	9		10	0	ALT	SPI2.DI	4	4		
14	14	UART1.TX	ALT	1	11		12	0	ALT	SPI2.CS1	6	6		
102	102	UART1.RX	ALT	1	13		14	0	ALT	SPI2.D0	3	3		
0	0	I2C2.SCL	ALT	1	15		16	0	ALT	I2S_LRCK	10	10		
1	1	I2C2.SDA	ALT	1	17		18	0	ALT	I2S_BCK	9	9		
38	38	I2C3.SCL	ALT	1	19		20	0	ALT	I2S_D0	13	13		
39	39	I2C3.SDA	ALT	1	21		22	0	ALT	I2S_DI	11	11		
15	15	G.A A15	IN	0	23		24	0	IN	G.B A20	20	20		
56	56	G.C B24	IN	1	25		26	0	IN	G.D D02	66	66		
67	67	G.E D03	IN	0	27		28	0	IN	G.F A22	22	22		
30	30	G.G A30	IN	0	29		30	0	IN	G.H A29	29	29		
28	28	G.I A28	IN	0	31		32	0	IN	G.J 27	27	27		
26	26	G.K A26	IN	0	33		34	0	IN	G.L A25	25	25		
		V_PAD			35		36			SYS_DCIN				
		VDD_IN			37		38			SYS_DCIN				
		GND			39		40			GND				

FIGURE 20 - GPIO MAP ON MOBAXTERM CONSOLE DIALOG AFTER EXECUTING GPIO_FIXUP.PY

Installing Node.js

Latest Node.js version now is "18".

But I have found, that the Node.js module onoff supports Node.js versions 10, 12, 14, 15 and 16. So, I am going to install version "16".

Using some advices from the page: <https://www.makersupplies.sg/blogs/tutorials/how-to-install-node-js-and-npm-on-the-raspberry-pi>

sudo apt-get update

sudo apt-get upgrade

uname -m (get processor type)

Now I know that my processor's type code is "**armv7l**" (note: L (small cap) is at the end of the code, not the digit 1!).

Note: Windows PowerShell (7) allows to use clipboard to copy-paste commands into (and from) SSH session dialog window. So, I am using SSH session on Windows PowerShell starting from below steps. Also, noting that the command `sudo -i` (to become root user) works on this system.

So, my file to download is: <https://nodejs.org/download/release/v16.18.1/node-v16.18.1-linux-armv7l.tar.xz>

Need additional archiving tools, because "xz":

```
sudo apt install xz-utils
```

`sudo apt-get install wget` (need only if Debian (if not installed on some previous step), not if Ubuntu)

Running the command to download the archive:

```
wget https://nodejs.org/download/release/v16.18.1/node-v16.18.1-linux-armv7l.tar.xz
```

Extracting the archive with the command:

```
tar -xf node-v16.18.1-linux-armv7l.tar.xz
```

Going to directory of extracted files:

```
cd node-v16.18.1-linux-armv7l/
```

Making these files accessible from any place:

```
sudo cp -R * /usr/local/
```

Checking node and npm version:

```
node -v
```

```
npm -v
```

Seeing that node version is 16.18.1 and npm version is 8.19.2.

Deleting now unneeded archive:

```
cd ..
```

```
sudo rm node-v16.18.1-linux-armv7l.tar.xz
```

Setting my local time zone

On Debian I saw that system automatically gets time from network. It is good, but I must correct time zone settings:

```
date
```

Thu Nov 24 06:36:52 UTC 2022

```
sudo timedatectl list-timezones
```

Find my zone from the list.

Change time zone:

```
sudo timedatectl set-timezone Europe/Vilnius
```

Now my time is:

```
Thu Nov 24 08:42:56 EET 2022
```

Installing Node-RED

It is required to have Node.js - I already installed it in section before this.

Using advice from https://agrinode.github.io/docs/install_nodered_orangepi/

```
sudo npm install -g --unsafe-perm node-red
```

For Debian: the system, after node-red installation, proposed to update npm and I did this:

```
sudo npm install -g npm@9.2.0
```

Now check how my node-red works:

```
node-red
```

Response in Console window:

```
Welcome to Node-RED
```

```
8 Dec 10:34:56 - [info] Node-RED version: v3.0.2
```

```
8 Dec 10:34:56 - [info] Node.js version: v16.18.1
```

```
8 Dec 10:34:56 - [info] Linux 3.10.62-rel5.0.2-legendary-v1.36 arm LE
```

```
8 Dec 10:35:02 - [info] Loading palette nodes
```

```
8 Dec 10:35:10 - [info] Settings file : /root/.node-red/settings.js
```

```
8 Dec 10:35:10 - [info] Context store : 'default' [module=memory]
```

```
8 Dec 10:35:10 - [info] User directory : /root/.node-red
```

```
8 Dec 10:35:10 - [warn] Projects disabled : editorTheme.projects.enabled=false
```

```
8 Dec 10:35:10 - [info] Flows file : /root/.node-red/flows.json
```

```
8 Dec 10:35:10 - [info] Creating new flow file
```

```
8 Dec 10:35:10 - [warn]
```

Your flow credentials file is encrypted using a system-generated key.

If the system-generated key is lost for any reason, your credentials file will not be recoverable, you will have to delete it and re-enter your credentials.

You should set your own key using the 'credentialSecret' option in your settings file. Node-RED will then re-encrypt your credentials file using your chosen key the next time you deploy a change.

8 Dec 10:35:10 - [info] Server now running at <http://127.0.0.1:1880/>

8 Dec 10:35:10 - [warn] Encrypted credentials not found

8 Dec 10:35:10 - [info] Starting flows

8 Dec 10:35:10 - [info] Started flows

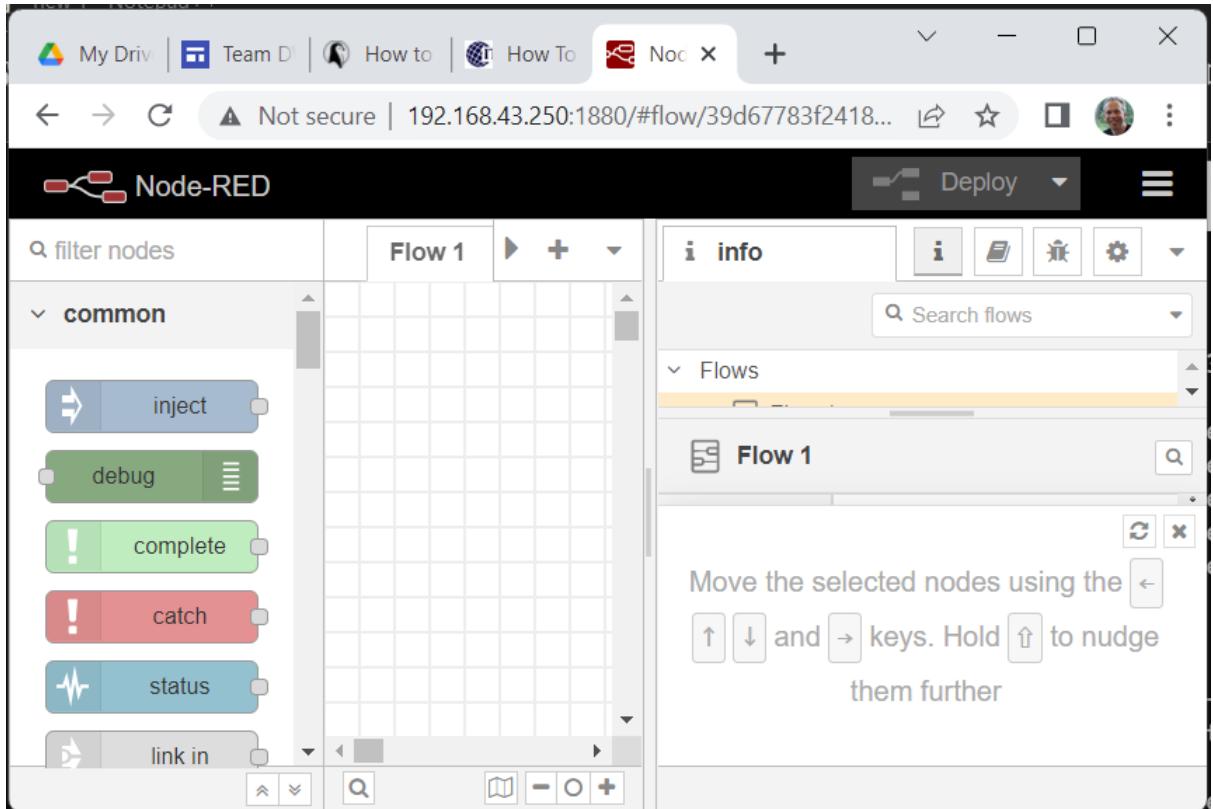


FIGURE 21 - MY SERVER's NODE-RED WEB PAGE ON BROWSER RUNNING ON MY WINDOWS

Open and edit files with MobaXterm

I want to open and edit on my Windows computer text and code files located inside my server. Checked how works the program Sublime Text 4 and found this program working and useful. But Sublime Text 4 is not free to use to anyone. After I found other program, which is free for home using and contains impressive additional function to remote browse files and also many other good functions.

Download page is this: <https://mobaxterm.mobatek.net/download-home-edition.html>

Using of this program is very easy - just install this program on Windows, run and enter SSH connection data - no need any additional steps to do in server installation (in opposite to Sublime Text 4).

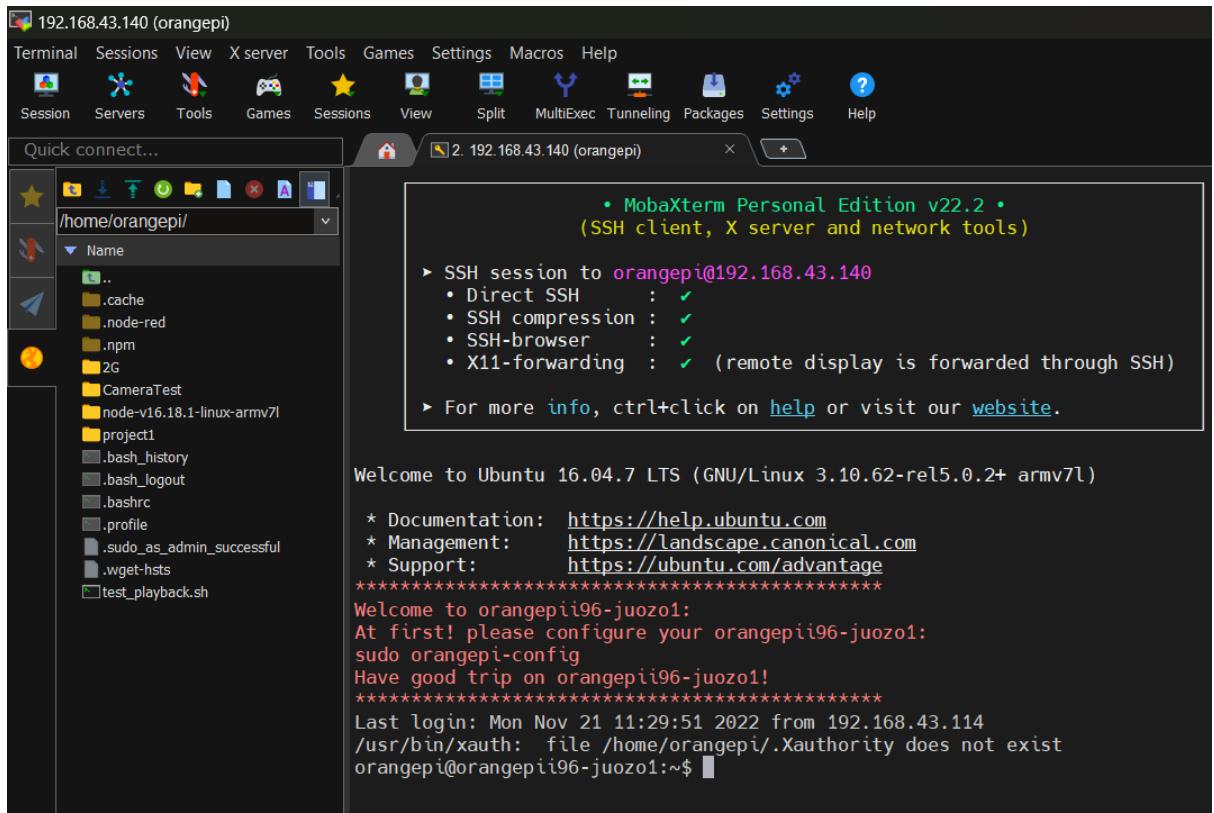


FIGURE 22 - MOBAXTERM PROGRAM WINDOW AFTER CONNECTION TO MY SERVER

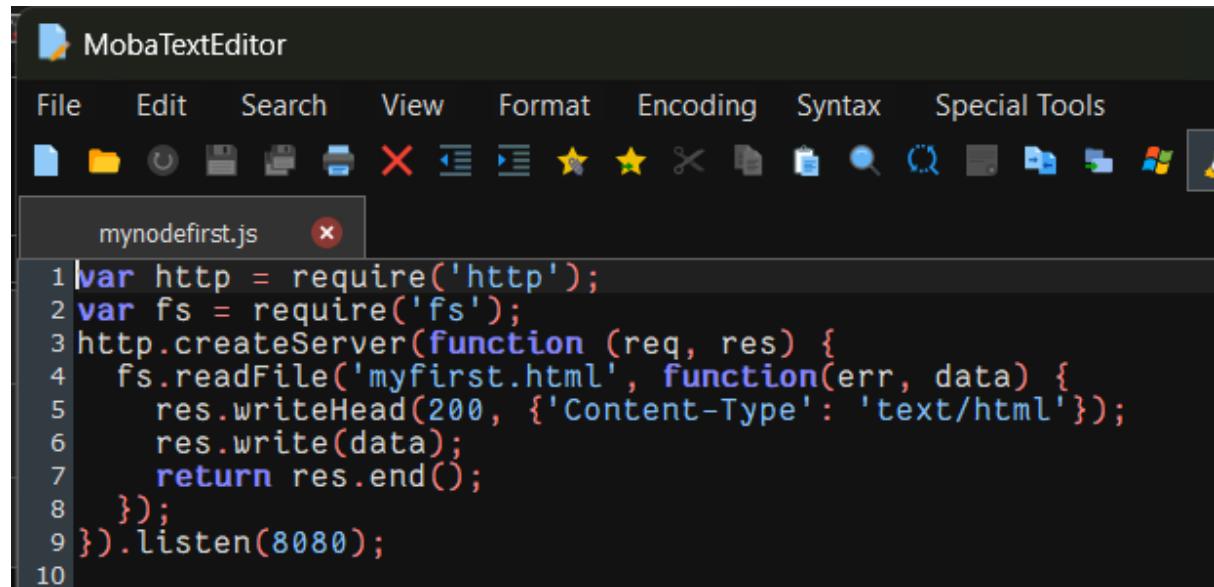


FIGURE 23 - EDITING MY FIRST NODE.JS PROGRAM ON MOBATEXTEDITOR FOR THIS DEVICE

```
orangepi@orangepii96-juozo1:~$ ls
2G CameraTest node-v16.18.1-linux-armv7l project1 test_playback.sh
orangepi@orangepii96-juozo1:~$ cd project1
orangepi@orangepii96-juozo1:~/project1$ node mynodefirst.js
```

FIGURE 24 - RUNNING MY FIRST NODE.JS PROGRAM FOR THIS DEVICE

Not secure | 192.168.43.140:8080

It is the site of Kimtys

juozas.kimtys.lt

juozapas.kimtys.lt

For information ask to: juozas.kimtys@gmail.com

Copyright © 2022 [Juozas Kimtys](#) All rights reserved.

FIGURE 25 - WEB PAGE EXAMPLE GENERATED BY NODE.JS ON MY ORANGEPI I96 SERVER

Blink LED (Node.js)

In order to toggle on-off GPIO pins, I need the module "onoff" .

<https://www.npmjs.com/package/onoff>

Many other GPIO libraries and methods are well described here (Comparing node.js GPIO implementations): <https://gist.github.com/jperkin/e1f0ce996c83ccf2bca9>

npm install onoff

npm install spi-device – we will need this later


On my Debian system the module 'onoff' I have installed successfully because Python version is 3.9.2.

But on Ubuntu 16.04 installation of this module fails, because too old version of Python3 (it is 3.5.2 version but required >Python3.6).

To use "onoff" on Ubuntu 16.04, one must install newer Python3.6. But it seems impossible task to do on Ubuntu 16.04

TMM-102-01-G-S

Pin Header, Single, Board-to-Board, 2 mm, 1 Rows, 2 Contacts, Through Hole, TMM

samtec

Gamintojas:	SAMTEC
Gamintojo detalės nr.:	TMM-102-01-G-S
Užsakymo kodas:	1668521
Produktų assortimentas	TMM

FIGURE 26 - FINDING CONNECTORS HAVING PITCH 2.0MM (SCREENSHOT FROM FARNELL)

FIGURE 27 - FINDING CONNECTORS HAVING PITCH 2.0MM (CJK4202K/2 FROM RCL.LT)

Now I'm using Debian. Connecting oscilloscope probes to 40-pins GPIO connector. Now I'm using only GPIO_B24 (pin25 by schematic of the module or pin56 by WiringPi) because other pins

initially are configured (by Debian firmware) to serve as ALT functions and are not accessible by using nor Node.js library “onoff”, nor the program orangepi-config. But, after running gpio_fix.py (during boot – as I configured previously), all pins must be accessible.

Creating some code. Initial code for this testing was taken from the:

https://www.w3schools.com/nodejs/nodejs_raspberrypi_blinking_led.asp

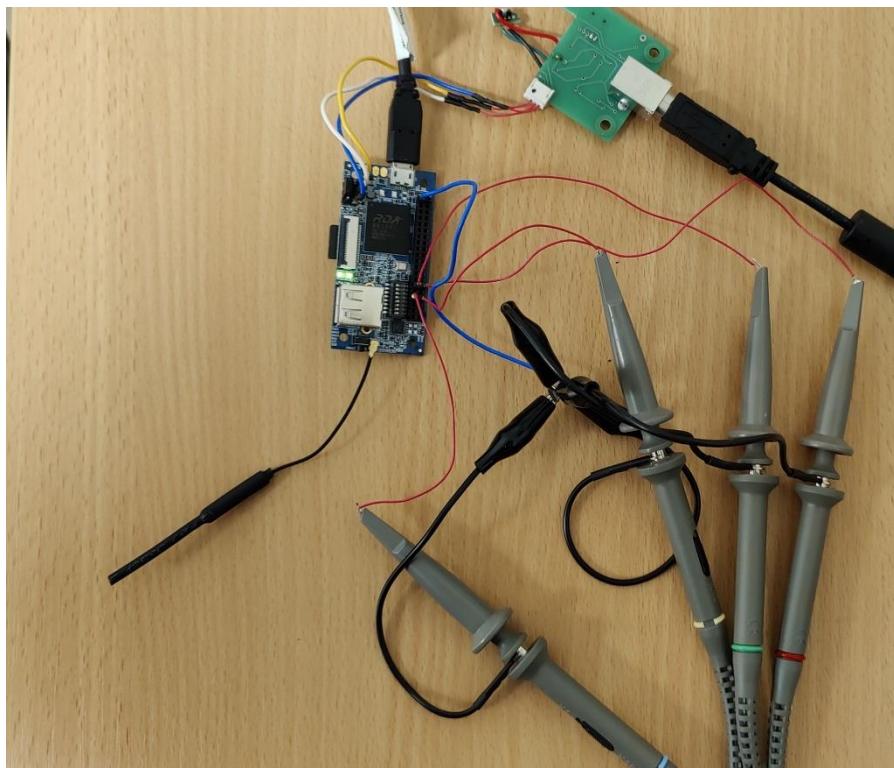


FIGURE 28 - CONNECTING OSCILLOSCOPE PROBES TO SOME GPIO PINS

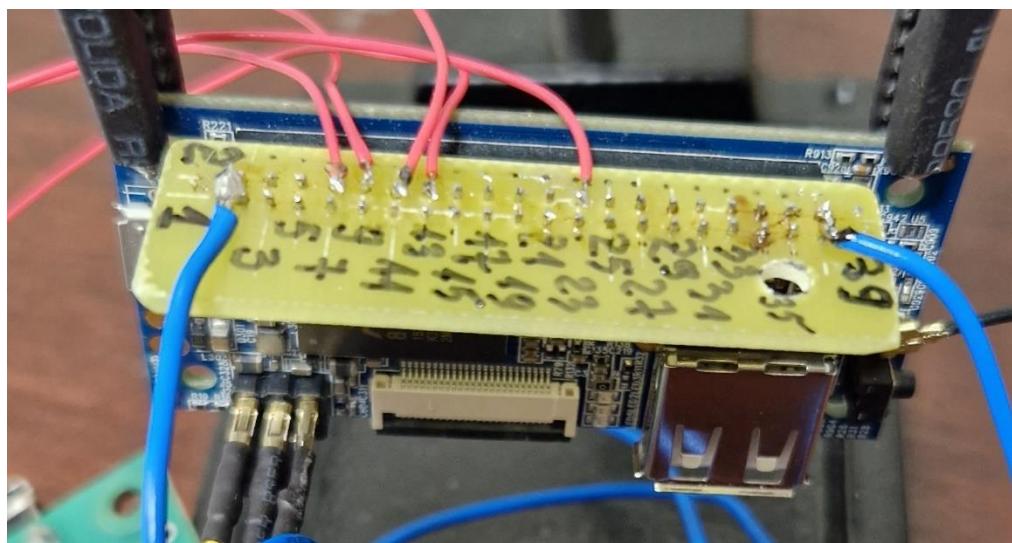
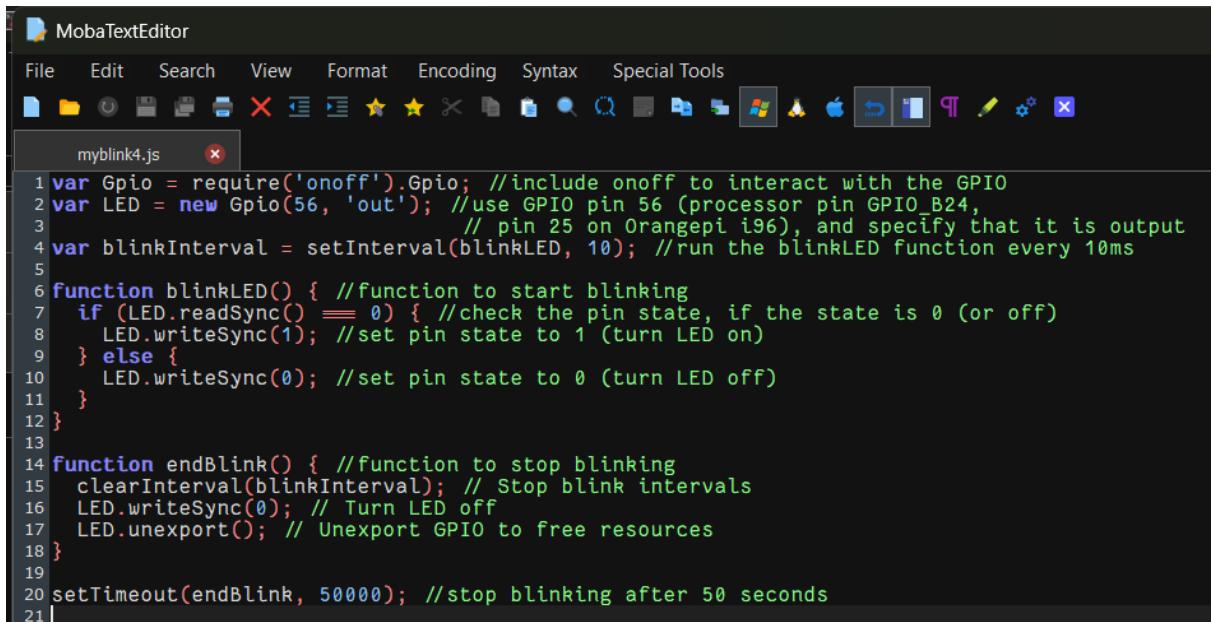



FIGURE 29 - PROTOTYPE BOARD TO TEST GPIO

The screenshot shows the MobaTextEditor interface with a file named 'myblink4.js' open. The code is a Node.js script that uses the 'onoff' library to control a GPIO pin (pin 56) as an output. It defines two functions: 'blinkLED' to toggle the pin state between 0 and 1 every 10ms, and 'endBlink' to stop the intervals and clean up resources. A timeout is set to stop the script after 50 seconds.

```
1 var Gpio = require('onoff').Gpio; //include onoff to interact with the GPIO
2 var LED = new Gpio(56, 'out'); //use GPIO pin 56 (processor pin GPIO_B24,
3 // pin 25 on OrangePi i96), and specify that it is output
4 var blinkInterval = setInterval(blinkLED, 10); //run the blinkLED function every 10ms
5
6 function blinkLED() { //function to start blinking
7   if (LED.readSync() === 0) { //check the pin state, if the state is 0 (or off)
8     LED.writeSync(1); //set pin state to 1 (turn LED on)
9   } else {
10     LED.writeSync(0); //set pin state to 0 (turn LED off)
11   }
12 }
13
14 function endBlink() { //function to stop blinking
15   clearInterval(blinkInterval); // Stop blink intervals
16   LED.writeSync(0); // Turn LED off
17   LED.unexport(); // Unexport GPIO to free resources
18 }
19
20 setTimeout(endBlink, 50000); //stop blinking after 50 seconds
21
```

FIGURE 30 - MAKING NODE.JS CODE ON MOBAXTERM MOBATEXTEditor

From any of my terminal session (Serial console, Windows PowerShell or MobaXterm):

sudo node myblink4.js

I need to do "sudo" because there are required permissions to access pins. It is possible to stop execution earlier than code ends - by using CTRL+Z

Using SPI ADC (Node.js)

To make measurement with SPI ADC, I need the module "spi-device"
<https://www.npmjs.com/package/spi-device/v/3.1.2>,

SPI works, but I found impossible to change SPI speed from "20.000.000Hz" to any other value. The module "spi-device" functions "open" and "setOptions" really do not change **anything** from default initial, because it is platform specific and do not really were implemented for this board. My ADC need to change speed to some 100000Hz or less, I'm stopping my attempts to make measurements with SPI ADC.

My code:

```
/*
Test ADC of type MCP3208 on Debian 11 by using Node.js
Juozas Kimtys
2022.12.14
using examples from:
https://www.npmjs.com/package/spi-device/v/3.1.2

*/
var Gpio = require('onoff').Gpio; //include onoff to interact with the GPIO
const spi = require('spi-device');
var measurementInterval1 = setInterval(myFunc_make_measurement1, 200);

// I will not use special pin !SPI2_CS, because the library 'spi-device' do
not have possibility to switch to other CS pin (to use more than one SPI device
on same bus)

var myGpio_CS_MCP3208 = new Gpio(15, 'out'); //use GPIO pin 15, and specify
that it is output
myGpio_CS_MCP3208.writeSync(1); //set pin state to 1 (deselect ADC)
var myGpio_CS_EEPROM = new Gpio(20, 'out'); //use GPIO pin 20, and specify
that it is output
myGpio_CS_EEPROM.writeSync(1); //set pin state to 1 (deselect EEPROM)

const intChannelCodeInitial = 0x80;
var intChannelCodeCurrent = intChannelCodeInitial;
const intCountOfChannels = 8;
var blnFlagSpiOptionsNeedToBeSet = true;

console.log('Starting spi-device test');

myGpio_CS_MCP3208.writeSync(0); //set pin state to 0 (select ADC)

//-----
```

```

function myFunc_make_measurement1() {

    myGpio_CS_MCP3208.write(1, (err) => { //set pin state to 1 (deselect ADC)
        if (err) throw err;
        myGpio_CS_MCP3208.write(0, (err) => { //reset pin state to 0 (select
ADC)
            if (err) throw err;
    // The MCP3008 is on bus 1 and it's device 0
    const mcp3008 = spi.open(1, 0, err => {
        // An SPI message is an array of one or more read+write transfers
        const message = [
            sendBuffer: Buffer.from([0x01, intChannelCodeCurrent, 0x00]), // Sent to
read channel 5
            receiveBuffer: Buffer.alloc(3),                                // Raw data read from
channel 5
            byteLength: 3,
            speedHz: 20000 // Use a low bus speed to get a good reading from the -
but this setting really does not work on the board OrangePi i96 on Debian
(Juozas Kimtys), I will try to set it soon separately
        ];
    }

    if (err) throw err;

    if (blnFlagSpiOptionsNeedToBeSet)
    {
        mcp3008.getOptions( (err, options) => {
            if (err) throw err;
            console.log('Initial options:', options);
            const myNewOptions = [
                maxSpeedHz: 20000 // initial value was '20000000', but this
setting also really does not work on the board OrangePi i96 on Debian
            ]
        }

        mcp3008.setOptions(myNewOptions, (err) => {
            if (err) throw err;
            blnFlagSpiOptionsNeedToBeSet = false;
        })
    );
    } //  if (blnFlagSpiOptionsNeedToBeSet)

    mcp3008.transfer(message, (err, message) => {
        if (err) throw err;

        // Convert raw value from sensor to celcius and log to console
        const rawValue = ((message[0].receiveBuffer[1] & 0x0F) << 8) +
message[0].receiveBuffer[2];
        const voltage = rawValue * 2.5 / 4095;
    }
}

```

```

        console.log(intChannelCodeCurrent, ' : ', rawValue);
        intChannelCodeCurrent += 1;
        if (intChannelCodeCurrent == (intChannelCodeInitial +
intCountOfChannels))
        {
            intChannelCodeCurrent = intChannelCodeInitial;
        }
    });
    // mcp3008.transfer(message
}); // const mcp3008 = spi.open(1
    // myGpio_CS_MCP3208.write(0
}); // myGpio_CS_MCP3208.write(1
} // function myFunc_measurement1

//-----
//-----

function myFunc_stop_measurement1() {
    clearInterval(measurementInterval1); // Stop blink intervals
    //LED1.write(0); // Turn LED off
    //LED1.unexport(); // Unexport GPIO to free resources
}

//-----
setTimeout(myFunc_stop_measurement1, 2000000); //stop measurements after 2000
seconds

```